Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37239874

RESUMO

The emergence of multidrug-resistant (MDR) bacteria has risen rapidly, leading to a great threat to global public health. A promising solution to this problem is the exploitation of phage endolysins. In the present study, a putative N-acetylmuramoyl-L-alanine type-2 amidase (NALAA-2, EC 3.5.1.28) from Propionibacterium bacteriophage PAC1 was characterized. The enzyme (PaAmi1) was cloned into a T7 expression vector and expressed in E. coli BL21 cells. Kinetics analysis using turbidity reduction assays allowed the determination of the optimal conditions for lytic activity against a range of Gram-positive and negative human pathogens. The peptidoglycan degradation activity of PaAmi1 was confirmed using isolated peptidoglycan from P. acnes. The antibacterial activity of PaAmi1 was investigated using live P. acnes cells growing on agar plates. Two engineered variants of PaAmi1 were designed by fusion to its N-terminus two short antimicrobial peptides (AMPs). One AMP was selected by searching the genomes of Propionibacterium bacteriophages using bioinformatics tools, whereas the other AMP sequence was selected from the antimicrobial peptide databases. Both engineered variants exhibited improved lytic activity towards P. acnes and the enterococci species Enterococcus faecalis and Enterococcus faecium. The results of the present study suggest that PaAmi1 is a new antimicrobial agent and provide proof of concept that bacteriophage genomes are a rich source of AMP sequences that can be further exploited for designing novel or improved endolysins.


Assuntos
Bacteriófagos , Siphoviridae , Humanos , Propionibacterium acnes/genética , Peptidoglicano/metabolismo , Escherichia coli/metabolismo , Endopeptidases/metabolismo , Siphoviridae/metabolismo , Bacteriófagos/metabolismo , Antibacterianos/química
2.
Int J Mol Sci ; 25(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38203259

RESUMO

Fosfomycin-resistance proteins (FosAs) are dimeric metal-dependent glutathione transferases that conjugate the antibiotic fosfomycin (Fos) to the tripeptide glutathione (γ-Glu-Cys-Gly, GSH), rendering it inactive. In the present study, we reported a comparative analysis of the functional features of two FosAs from Pseudomonas aeruginosa (FosAPA) and Klebsiella pneumoniae (FosAKP). The coding sequences of the enzymes were cloned into a T7 expression vector, and soluble active enzymes were expressed in E. coli. FosAKP displayed higher activity and was selected for further studies. The crystal structure of the dimeric FosAKP was determined via X-ray crystallography at 1.48 Šresolution. Fos and tartrate (Tar) were found bound in the active site of the first and second molecules of the dimer, respectively. The binding of Tar to the active site caused slight rearrangements in the structure and dynamics of the enzyme, acting as a weak inhibitor of Fos binding. Differential scanning fluorimetry (DSF) was used to measure the thermal stability of FosAKP under different conditions, allowing for the selection of a suitable buffer to maximize enzyme operational stability. FosAKP displays absolute specificity towards Fos; therefore, this enzyme was exploited for the development of an enzyme-based colorimetric biosensor. FosAKP was tethered at the bottom of a plastic cuvette using glutaraldehyde chemistry to develop a simple colorimetric method for the determination of Fos in drinking water and animal plasma.


Assuntos
Fosfomicina , Klebsiella , Animais , Fosfomicina/farmacologia , Klebsiella pneumoniae , Escherichia coli , Antibacterianos/farmacologia , Glutationa
3.
Methods Mol Biol ; 2178: 201-215, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33128752

RESUMO

Dye-ligand affinity chromatography is a widely used technique in protein purification. The utility of the reactive dyes as affinity ligands results from their unique chemistry, which confers wide specificity toward a large number of proteins. They are commercially available, inexpensive, stable and can easily be immobilized. Significant factors that contribute to the successful operation of a dye-ligand chromatography include matrix type, dye-ligand density, adsorption along with elution conditions and flow rate. The present chapter provides protocols for the synthesis of dye-ligand affinity adsorbents as well as protocols for screening, selection, and optimization of a given dye-ligand purification step. The purification of the glutathione transferases from Phaseolus vulgaris on Cibacron Blue 3GA-Sepharose affinity adsorbent is given as an example.


Assuntos
Glutationa Transferase , Phaseolus/enzimologia , Proteínas de Plantas , Sefarose/análogos & derivados , Glutationa Transferase/química , Glutationa Transferase/isolamento & purificação , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Sefarose/química
4.
Methods Mol Biol ; 2089: 41-46, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31773646

RESUMO

Drug development is the process of bringing a new pharmaceutical drug to the market once a lead compound has been identified through the process of drug discovery. Enzymes are one of the most important groups of drug targets; thus, enzyme inhibition is widely used for the treatment of certain disorders. The assessment of an inhibitor against an enzyme is predominantly based on two different parameters: the half-maximal inhibitory concentration (IC50) and the inhibition constant (Ki). This chapter describes an experimental procedure for the determination of the IC50 value of an enzyme inhibitor. The relationship between IC50 and Ki is also discussed.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Concentração Inibidora 50 , Cinética , Simulação de Acoplamento Molecular , Preparações Farmacêuticas/química
5.
Methods Mol Biol ; 2089: 235-243, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31773658

RESUMO

Ligand fishing is a convenient bioanalytical screening method that is based on the affinity selection of a ligand from a complex biological sample by an immobilized receptor. It is a versatile affinity-based screening approach and it has found application in multiple interacting pairs such as enzyme-inhibitor/activator, antigen-antibody, receptor-ligand, and protein-protein. Important parameters that affect the successful operation of the method are the high specificity and strong binding affinity of the interacting pair (e.g., enzyme-ligand complex) and the elution of the bound ligand from the complex. This chapter provides protocols for the synthesis of affinity adsorbent and its application in off-line ligand-fishing procedure for a 6His-tagged glutathione transferase (GST).


Assuntos
Produtos Biológicos/química , Produtos Biológicos/farmacologia , Anticorpos/metabolismo , Cromatografia de Afinidade/métodos , Descoberta de Drogas/métodos , Enzimas Imobilizadas/química , Enzimas Imobilizadas/farmacologia , Glutationa Transferase/metabolismo , Ligantes , Ligação Proteica/fisiologia , Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...